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The efficiency of neuronal encoding in sensory and motor systems has
been proposed as a first principle governing response properties within
the central nervous system. We present a continuation of a theoretical
study presented by Zhang and Sejnowski, where the influence of neu-
ronal tuning properties on encoding accuracy is analyzed using infor-
mation theory. When a finite stimulus space is considered, we show that
the encoding accuracy improves with narrow tuning for one- and two-
dimensional stimuli. For three dimensions and higher, there is an optimal
tuning width.

1 Introduction

The potential impact of coding efficiency on neuronal response proper-
ties within the central nervous system was first proposed by Attneave
(1954) and has since been studied using both theoretical and experimen-
tal approaches. The issue of optimal neuronal tuning widths has received
much attention in recent literature. Empirical examples of both finely
tuned receptive fields (Kuffler, 1953; Lee, 1999) and broadly tuned neurons
(Georgopoulos, Schwartz, & Kettner, 1986; Knudsen & Konishi, 1978) have
been found. Theoretical arguments have also been made for both sharp
(Barlow, 1972; Lettvin, Maturana, McCulloch, & Pitts, 1959) and broad
(Baldi & Heiligenberg, 1988; Eurich & Schwegler, 1997; Georgopoulos et al.,
1986; Hinton, McClelland, & Rumelhart, 1986; Salinas & Abbott, 1994;
Seung & Sompolinsky, 1993; Snippe, 1996; Snippe & Koenderink, 1992)
tuning curves as a means to increase encoding accuracy.

Using Fisher information, Zhang and Sejnowski (1999) offered an in-
triguing solution where the choice of narrow or broad tuning curves de-
pends on the dimensionality of the stimulus space. They found that for
one dimension, the encoding accuracy increases with decreasing tuning
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width and that for two dimensions, the encoding accuracy is independent
of the tuning width. For three dimensions and higher, the results suggest
that encoding accuracy should increase with increasing tuning width. The
result, which is widely cited in works on neuronal encoding, offers a uni-
versal scaling rule for all radial symmetric tuning functions. However, this
scaling rule is highly unintuitive in that for greater than three dimensions,
it predicts optimal encoding accuracy for infinite tuning widths, that is,
tuning widths for which neurons have no discrimination power and all
neurons are indistinguishable from each other. In this note, we analyze this
effect and show that when a finite stimulus space is considered, there is
an optimal tuning width (in terms of Fisher information) for all stimulus
dimensionalities.

2 Fisher Information

2.1 Fisher Information for an Infinite Stimulus Space. The Cramér-
Rao inequality gives a lower bound for the variance of any unbiased esti-
mator (Cover & Thomas, 1991) and is useful for studying neuronal encoding
accuracy in that it represents the minimum mean-squared reconstruction
error that can be achieved by any decoding strategy (Seung & Sompolin-
sky, 1993). Let x = (x1, x2, . . . , xD) be a vector describing a D-dimensional
stimulus. The Cramér-Rao bound is then given by

v (x) ≥ J −1 (x) , (2.1)

where v is the covariance matrix of a set of unbiased estimators for x, J
is the Fisher information matrix, and the matrix inequality is given in the
sense that v(x) − J−1(x) must be a nonnegative definite matrix (Cover &
Thomas, 1991). For an encoding variable representing neuronal firing rates,
the Fisher information matrix for a neuron is given by

J ij (x) = E
[(

∂

∂xi
ln P [n | x, τ ]

) (
∂

∂xj
ln P [n | x, τ ]

)]
, (2.2)

where E represents the expectation value over the probability distribution
P[n | x,τ ] for firing n spikes at stimulus x within a time window τ . For
multiple neurons with independent spiking, the total Fisher information
for N neurons is given by the sum

J (x) =
N∑

a=1

Ja (x). (2.3)

If the neurons are restricted to radial symmetric tuning functions and
distributed identically throughout the stimulus space such that the
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distributions of estimation errors in each dimension are identical and
uncorrelated, the Fisher information matrix becomes diagonal (Zhang &
Sejnowski, 1999), and the total Fisher information reduces to

J (x) =
N∑

a=1

D∑
i=1

E
(

∂

∂xi
ln Pa [n | x, τ ]

)2

. (2.4)

For homogeneous Poisson spike statistics,

P[n | x, τ ] = (τ · f (x))n

n!
exp (−τ f (x)) , (2.5)

where f (x) describes the mean firing rate of the neuron with respect to the
stimulus, or the neuronal tuning function. Equation 2.4 then becomes

J (x) = τ

N∑
a=1

D∑
i=1

(
∂

∂xi
fa (x)

)2 1
fa (x)

. (2.6)

For a gaussian tuning function,

f (x) = F exp

(
− 1

2σ 2

D∑
i=1

(xi − ci )
2

)
, (2.7)

where F represents the mean peak firing rate, c = (c1, c2, . . . , cD) represents
the preferred stimulus of the neuron, and σ represents the tuning width
parameter for the neuron. Substitution into equation 2.6 gives

J (x) = τ

N∑
a=1

1
σ 4

[
D∑

i=1

(xi − ca ,i )
2

]
exp

(
− 1

2σ 2

D∑
i=1

(xi − ca ,i )
2

)
. (2.8)

Assuming that the preferred stimuli for the neurons are uniformly dis-
tributed throughout the stimulus space, the average Fisher information
per neuron for an infinite stimulus space can be found by replacing the
summation with an integral (Zhang & Sejnowski, 1999):

J =
∫ ∞

−∞
J1 (x) dx1, . . . , dxD, (2.9)



1514 W. M. Brown and A. Bäcker

where J1(x) represents the Fisher information for a single neuron rather
than the total as given in equation 2.4. Under these assumptions, we can
make the replacement:

ξ = x − c,

J =
∫ ∞

−∞
J1 (ξ ) dξ1, . . . , dξD

. (2.10)

For Poisson spike statistics and gaussian tuning (see equation 2.8),

J = F τ

σ 4

[
−σ 2

2

(
2ξ exp

(
− ξ 2

2σ 2

)
− σ

√
2π · erf

(
ξ
√

2
2σ

))]∞

−∞
, (2.11)

for D = 1. Here, the gaussian error function is given by

erf (b) = 2√
π

∫ b

0
exp

(−t2)dt. (2.12)

If we assume that the stimulus space (integration interval) is infinite and
that σ is finite, equation 2.11 reduces to

J1D = F τ
√

2π

σ
. (2.13)

Due to symmetry with respect to different dimensions, equation 2.13 can
be generalized to any dimensionality to give the result reported by Zhang
and Sejnowski (1999):

J = F dτ (2π )d/2σ d−2. (2.14)

The Fisher information based on equation 2.14 as a function of tuning width
is shown in Figure 1. Although we have shown the Fisher information per
neuron as an average, it is actually the exact Fisher information for each
neuron because of the assumption of homogeneous tuning widths and an
infinite stimulus space. Therefore, the total Fisher information can be found
by multiplying the Fisher information per neuron by the number of neurons
to get Fisher information across the stimulus space that is independent of x.
Equation 2.14 does not describe the influence of tuning width on encoding
accuracy in the limit as σ approaches infinity, however, and therefore is
unusable when the tuning width is large relative to the stimulus space. This
is relevant, since for D > 2, equation 2.14 predicts optimal tuning widths
to be infinite. Furthermore, when using neuronal firing rate as an encoding
variable, this becomes relevant in that for a finite number of neurons with
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Figure 1: Scaling rule for the average Fisher information per neuron as a func-
tion of tuning width for different stimulus dimensionalities. Dashed lines rep-
resent the Fisher information calculated when the stimulus space is infinite (see
equation 2.14), and solid lines represent calculations for a finite stimulus space
(see equation 2.15). In this plot, the Fisher information is divided by the peak
firing rate (F ) and the time window (τ ).

finite firing rates and a finite decoding time, the range for the stimulus
must be finite. That is, with discrete spiking events, there is a range of
stimulus space beyond which no Fisher information can be conveyed within
a reasonable decoding time.

2.2 Fisher Information for a Finite Stimulus Space. In order to study
Fisher information within a finite stimulus space, we begin by considering
a stimulus range normalized to lie in the inclusive range between 0 and
1. In this case, the tuning width is expressed in terms of a fraction of the
finite stimulus space. If we consider an infinite number of neurons with
preferred stimuli evenly distributed across the finite stimulus space, the
average Fisher information per neuron is given (for radial symmetric tuning
functions) by

J f =
∫ 1

0
dc1, . . . , dcD

∫ 1

0
J1 (x, c)dx1, . . . , dxD, (2.15)
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where J1(x, c) is the Fisher information at x for the neuron with preferred
stimulus c. Here,

J1 (x, c) = τ
1
σ 4

[
D∑

i=1

(xi − ci )
2

]
exp

(
− 1

2σ 2

D∑
i=1

(xi − ci )
2

)
. (2.16)

For the one-dimensional case with Poisson spiking statistics and gaussian
tuning (see equation 2.8), the average Fisher information per neuron is
given by

J f 1D = F τ

(√
2π

σ
erf

(√
2

2σ

)
+ 4 exp

(
− 1

2σ 2

)
− 4

)
, (2.17)

for the two-dimensional case by

J f 2D = 4F τ




π

(
erf

(√
2

2σ

))2

+ 3σ
√

2πerf

(√
2

2σ

) (
exp

( −1
2σ 2

)
− 1

)

+ 4σ 2 exp
(−1

σ 2

)(
1 − 2 exp

(
1

2σ 2

))
+ 4σ 2


 ,

(2.18)

and for the three-dimensional case by

J f 3D =

12σ F τ




π3/2

√
2

2

(
erf

(√
2

2σ

))3

− 4σπ

(
erf

(√
2

2σ

))2 (
1 − exp

( −1
2σ 2

))

− 5σ 2
√

2πerf

(√
2

2σ

) (
2 exp

( −1
2σ 2

)
− exp

(−1
σ 2

)
− 1

)

+ 4σ 3
(

3 exp
( −1

2σ 2

)
− 3 exp

(−1
σ 2

)
+ exp

( −3
2σ 2

)
− 1

)




.

(2.19)

The influence of tuning width on the average Fisher information per neuron
is plotted in Figure 1 for the first D = 1–3 dimensionalities. For one and two
dimensions, the average Fisher information, and thus encoding accuracy,
increases with decreasing tuning width. For three dimensions, there is an
optimal tuning width in terms of Fisher information, given by the σ at
which dJ/dσ = 0 (approximately 22.541% of the stimulus space).

For higher dimensionalities, optimal tuning widths also exist. This can be
seen by the fact that as the tuning width approaches infinity, the derivative
of the probability of firing a given number of spikes with respect to a
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stimulus goes to zero. For the example presented here,

lim
σ→∞

∂

∂xk
f (x) = lim

σ→∞
F (ck − xk)

σ 2 exp

(
− 1

2σ 2

D∑
i=1

(xi − ci )
2

)
= 0,

(2.20)

for any k from 1 to D. In this limit, the tuning function is independent of
x, the probability distribution for spike firing (see equation 2.5) is indepen-
dent of x, and the resulting derivatives give a Fisher information of zero (see
equation 2.2). In the limit as the tuning width goes to zero, equation 2.14
becomes valid (the limits of the error functions and exponentials are equiv-
alent in both the case where the tuning width is infinitesimal and the case
when the stimulus space is infinite):

lim
σ→0

J f = lim
σ→0

∫ 1

0
dc1, . . . , dcD

∫ 1

0
J1(x, c)dx1, . . . , dxD

= lim
σ→0

∫ ∞

−∞
J1(ξ )dξ1, . . . , dξD

=



∞, D = 1
2Fdτπ, D = 2
0, D > 2.

(2.21)

Therefore, at least one maximum in the Fisher information must exist for
higher dimensionalities. While we expect that the optimal tuning width
shifts toward a larger fraction of the stimulus space as the dimensionality
is increased, we are unable to find a closed form for equation 2.15 that can
prove this.

The deviation of the results from equation 2.14 is explained by the fact
that an increase in tuning width in equation 2.15 results in an increase
in tuning width relative to the stimulus space, an effect that is not easily
seen when an infinite stimulus space is considered. Clearly, this deviation
should be expected, as the limit given in equation 2.20 contradicts the result
in equation 2.14. An infinite tuning width produces a neuronal tuning
function that is flat at all but infinite stimuli. A neuron with such a tuning
curve cannot discriminate between finite stimuli and therefore contributes
zero Fisher information within finite stimulus ranges. This result, which is
true for all dimensionalities, tells us that an infinite tuning width can never
be optimal, at least under the assumptions presented in this work.

2.3 Determining the Finite Stimulus Range. As stated earlier, when
using neuronal firing rate as an encoding variable, there is a physiological
limit to the range of stimulus space that can be perceived. This limit is due
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Figure 2: Fisher information as a function of stimulus (Jx(x)) calculated using
equation 2.24. The average Fisher information per neuron calculated using
equation 2.22 is found by normalizing the finite stimulus space to lie between
0 and 1 and distributing the preferred stimuli of the neurons between α and
1 − α such that the drop in Fisher information at the corners of the stimulus
space does not fall below Jcutoff. The shaded regions are not included in the
finite stimulus space and therefore are not included in the average. For this
plot, σ = 0.2, Jcutoff = 8, and α = −0.23. The Fisher information is divided by
the peak firing rate (F ) and the time window (τ ).

to the fact that the number of neurons is finite, the firing rates are finite,
and the decoding time is finite. This limit will depend on the number of
neurons, the preferred stimuli of the neurons, the mean peak firing rate,
and the decoding time. There is no implication, however, that the stimulus
space range should equal the range of preferred stimuli for the neurons.
It is therefore important to consider the influence of the preferred stimuli
range on the optimal tuning width.

We can evaluate the effect of the preferred stimuli range on the optimum
tuning width by fixing the integration interval for the stimulus space (x) to
lie between 0 and 1, and setting the integration interval for the preferred
stimuli (c) such that the drop in Fisher information at the corners of the stim-
ulus space does not fall below some threshold value (Jcutoff) (see Figure 2).
In this case, the tuning width always represents a fraction of the stimulus
space. The range of the preferred stimuli is dependent on both σ and Jcutoff;
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however, it will always be centered on the stimulus space and identical in
each dimension. The choice of the Fisher information as a threshold to limit
the stimulus space is reasonable because there is a finite range of stimulus
space within which the mean-squared error will be tolerable based on a
finite distribution of preferred stimuli.

We can evaluate the effect of Jcutoff on the Fisher information per neuron
in terms of σ as

Jα (σ, α) = 1

(1 − 2α)D

∫ 1−α

α

dc1, . . . , dcD

∫ 1

0
J1 (x, c)dx1, . . . , dxD,

(2.22)

such that

Jx (x1 = 0, . . . , xD = 0) = Jx (x1 = 1, . . . , xD = 1) = Jcutoff, (2.23)

where Jx represents the Fisher information as a function of the stimulus

Jx (x) =
∫ 1−α

α

J1 (x, c) dc1, . . . , dcD, (2.24)

and α determines the range of the preferred stimuli. For a given Jcutoff and
σ , we solve for the range of the preferred stimuli (α – 1-α) using a nu-
merical evaluation of equation 2.23 such that the Fisher information at the
corners of the stimulus space will be equal to Jcutoff. Of course, for each
value of σ , there is a maximum Jcutoff for which a solution exists simply
because the Fisher information at any point in the stimulus space is finite.
Once α has been determined, an analytic solution to equation 2.22 can then
be solved to determine the average Fisher information per neuron over
the stimulus space range, using a range of preferred stimuli, which may
be larger or smaller than the range of the stimulus space, depending on
the value of Jcutoff. Because equation 2.22 represents an average Fisher infor-
mation per neuron, it is normalized to account for the range of the neuronal
distribution.

For a finite neuronal distribution range, there is a finite range of stimulus
space within which the mean squared error will be tolerable. By determining
the average Fisher information per neuron using equation 2.22, the finite
stimulus space is always determined by the points at which the Fisher
information begins to fall below this threshold, regardless of the tuning
width. The results for this evaluation are shown in Figure 3 for the first three
dimensionalities. For all cases, an increase in Jcutoff results in an increase in
the range of the preferred stimuli (decrease in α); that is, when the cutoff
becomes low, the range of the stimulus space must become larger relative
to the distribution of the neurons such that the stimulus space includes
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Figure 3: Plot of the average Fisher information per neuron for one to three
dimensions calculated using equation 2.22 (left) along with the corresponding
ranges for the preferred stimuli (right). The plotted values for Jcutoff were chosen
so that the range of σ is large enough to illustrate differences (as σ increases, the
maximum Jcutoff that can be achieved decreases). For all dimensionalities, there
is an increase in the range of preferred stimuli and a decrease in the average
Fisher information per neuron as Jcutoff increases. The Fisher information is
divided by the peak firing rate (F ) and the time window (τ ).
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regions with higher mean squared errors. This increase in the range of the
preferred stimuli results in a decrease in the average Fisher information
per neuron. This is due to the fact that the total Fisher information within
the finite stimulus space (0–1) for a single neuron decreases as c deviates
from 0.5. As the range of the preferred stimuli increases, the average Fisher
information for each neuron within the stimulus space will decrease.

The results quantitate the idea that the encoding accuracy within a finite
stimulus space of interest can be increased by increasing the range of pre-
ferred stimuli around the center of the stimulus space. This increase comes
at an energetic cost resulting from an increase in the number of neurons,
with diminishing returns due to a decrease in the average Fisher informa-
tion per neuron within the stimulus space. While a change in the curvature
of the average Fisher information as a function of σ can result from a change
in the Fisher information cutoff, the Fisher information per neuron always
improves with narrow tuning for one and two dimensions. For three dimen-
sions, there will always be an optimal tuning width; however, as shown in
Figure 3, the optimal tuning width will shift toward a larger fraction of the
stimulus space with an increase in the Fisher information cutoff. Numerical
evaluation of the optimal tuning width calculated with Jcutoff ranging from
10−5 to 10 results in an increase in the optimal tuning width from 0.21 to
0.41, a decrease in α from 0.48 to −0.5, and a decrease in the optimal average
Fisher information per neuron from 8.34 to 1.78.

3 Conclusion

The result in equation 2.14 gives the Fisher information per neuron when
an infinite stimulus space is considered. It is implicit in this model that the
Fisher information at any point in the stimulus space is constant (indepen-
dent of the stimulus) due to an infinite range of the preferred stimuli for
the neurons (see the substitution in equation 2.10). We have continued this
analysis using a finite stimulus space for two reasons. First, equation 2.14 is
not accurate when the tuning width is large relative to the stimulus space
due to an assumption in the derivation that σ is finite. Therefore, it is conve-
nient to use a finite stimulus space in order to ascertain accurate results at
any σ . Second, physiological limits preclude both the case where the stim-
ulus space is infinite and the case where the range of the preferred stimuli
is infinite. Using a finite stimulus space and a finite range of preferred
stimuli introduces edge effects that are important to consider in models of
encoding accuracy simply because these edge effects must exist in animal
physiology.

In the case where a finite range of preferred stimuli is considered, the
Fisher information cannot be independent of the stimulus, even when an
infinite number of neurons are considered. This results in limited regions of
the stimulus space where the encoding accuracy is tolerable. When using
a finite stimulus space, the Fisher information per neuron is not constant
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and therefore must be reported as an average. The fact that both of these
conditions must be true leaves us with the case where we are interested only
in limited regions of the stimulus space and for each neuron are concerned
only with the contribution to encoding accuracy that lies within this space.

In our model, the limits to the encoding accuracy are governed by the
limits to the range of the preferred stimuli. The minimum Fisher information
across the finite stimulus space of interest can be increased by increasing the
range of the preferred stimuli. The cost of this increase is both an increase
in the number of neurons and a decrease in the average Fisher information
per neuron within the stimulus space. The optimal tuning width for three
dimensions is dependent on the distribution of the preferred stimuli within
the stimulus space. The average Fisher information per neuron at a given
tuning width will change depending on the desired value for Jcutoff. How-
ever, the following rule is universal under the framework of our model:
the encoding accuracy will improve with narrow tuning for one and two
dimensions, and for higher dimensions there will be at least one optimal
tuning width.

In general, when a finite number of neurons are considered to encode
a finite stimulus space, there should be an optimal tuning width (in terms
of encoding accuracy) for any dimension. Although our results show an
infinitesimal tuning width to be optimal for one and two dimensions, for
a finite number of neurons this cannot be the case, as the tuning curves
will become too narrow to cover the stimulus space without gaps (Eurich
& Wilke, 2000; Wilke & Eurich, 2002). Therefore, the variance in the en-
coding accuracy as a function of the tuning width is also important to
consider. We have based our work on the model developed by Zhang
and Sejnowski (1999), assuming independent spike firing, constant tun-
ing widths, radial symmetric tuning curves, and neuron distributions such
that the estimation errors in different dimensions are always identical and
uncorrelated. The model is desirable in that it is mathematically simple
and therefore useful for studying the effect of dimensionality on encod-
ing accuracy. However, when applied in a biological setting, many other
factors have been shown to influence optimal tuning widths. In addi-
tion to Fisher information and variance of encoding accuracy, an objec-
tive function for optimal tuning widths should also consider energetic
constraints (Bethge, Rotermund, & Pawelzik, 2002), heterogeneity in the
tuning widths across distinct stimulus dimensions (Eurich & Wilke, 2000),
heterogeneity in the tuning widths within a stimulus dimension (Wilke &
Eurich, 2002), noise models (Wilke & Eurich, 2002), covariance of the noise
(Karbowski, 2000; Pouget, Deneve, Ducom, & Latham, 1999; Wilke &
Eurich, 2002; Wu, Amari, & Nakahara, 2002), nonsymmetric tuning curves
(Eurich & Wilke, 2000), decoding time and maximum firing rates (Bethge
et al., 2002), hidden dimensions (Eurich & Wilke, 2000), choice of encoding
variable(s) (Eckhorn, Grusser, Kroller, Pellnitz, & Popel, 1976), and biased
estimators.
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Appendix

The steps in the integration used to derive the average Fisher information
per neuron for one dimension (J f1D ) are given below (The integrations for
higher dimensionalities are similar):

J f 1D =
∫ 1

0
dc

∫ 1

0
J (x, c)dx∫ 1

0
J (x, c)dx =

∫ 1

0
F τ

(x − c)2

σ 4
exp

(
− (x − c)2

2σ 2

)
dx

= F τσ−4 exp
(

− c2

2σ 2

) ∫ 1

0
(x − c)2 exp

(
− x2

2σ 2
+ cx

σ 2

)
dx

= F τσ−4 exp
(

− c2

2σ 2

)



∫ 1

0
x2 exp

(
− x2

2σ 2
+ cx

σ 2

)
dx

−
∫ 1

0
2cx exp

(
− x2

2σ 2
+ cx

σ 2

)
dx

+
∫ 1

0
c2 exp

(
− x2

2σ 2
+ cx

σ 2

)
dx




= F τσ−4 exp
(

− c2

2σ 2

)

×




σ 2x exp
(

− x2

2σ 2
+ cx

σ 2

)]1

0
+ cσ 2

∫ 1

0
x exp

(
− x2

2σ 2
+ cx

σ 2

)
dx

+ σ 2
∫ 1

0
exp

(
− x2

2σ 2
+ cx

σ 2

)
dx

− 2cσ 2 exp
(

− x2

2σ 2
+ cx

σ 2

)]1

0
− 2c2

∫ 1

0
exp

(
− x2

2σ 2
+ cx

σ 2

)
dx

+ σ c2
√

2π

2
exp

(
c2

2σ 2

)
erf

(√
2 (x − c)

2σ

)]1

0




= F τσ−4 exp
(

− c2

2σ 2

)

×




σ 2x exp
(

− x2

2σ 2
+ cx

σ 2

)]1

0
−cσ 2 exp

(
− x2

2σ 2
+ cx

σ 2

)]1

0

+c2
∫ 1

0
exp

(
− x2

2σ 2
+ cx

σ 2

)
dx

+ σ 3
√

2π

2
exp

(
c2

2σ 2

)
erf

(√
2 (x − c)

2σ

)]1

0

2cσ 2 exp
(

− x2

2σ 2
+ cx

σ 2

)]1

0

− c2σ
√

2π exp
(

c2

2σ 2

)
erf

(√
2 (x − c)

2σ

)]1

0

+ σ c2
√

2π

2
exp

(
c2

2σ 2

)
erf

(√
2 (x − c)

2σ

)]1

0
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= F τσ−2 exp
(

− c2

2σ 2

)(
(c − 1) exp

(
c
σ 2 − 1

2σ 2

)
− c

)

− F τ

√
2π

2σ

(
erf

(√
2 (c − 1)

2σ

)
− erf

(
c
√

2
2σ

))

J f 1D = F τσ−2
∫ 1

0 exp
(

− c2

2σ 2

) (
(c − 1) exp

(
c
σ 2 − 1

2σ 2

)
− c

)
dc

− F τ

√
2π

2σ

∫ 1

0

(
erf

(√
2 (c − 1)

2σ

)
− erf

(
c
√

2
2σ

))
dc

= F τσ−2 exp
(

− 1
2σ 2

)∫ 1

0
exp

(
− c2

2σ 2 + c
σ 2

)
(c − 1) dc

− F τσ−2
∫ 1

0
c exp

(
− c2

2σ 2

)
dc

− F τ

√
2π

2σ

∫ 1

0
erf

(√
2 (c − 1)

2σ

)
dc − F τ

√
2π

2σ

∫ 1

0
erf

(
c
√

2
2σ

)
dc

= − F τ

(
exp

(
− 1

2σ 2

)
exp

(
− c2

2σ 2 + c
σ 2

)
− exp

(
− c2

2σ 2

))]1

0

− F τ

√
2π

2σ


 c · gerf

(√
2 (c − 1)

2σ

)]1

0

+
∫ 1

0
c

d
dc

erf

(√
2 (c − 1)

2σ

)
dc




− F τ

√
2π

2σ


 c · gerf

(
c
√

2
2σ

)]1

0

+
∫ 1

0
c

d
dc

erf

(
c
√

2
2σ

)
dc




= − F τ

(
exp

(
− 1

2σ 2

)
exp

(
− c2

2σ 2 + c
σ 2

)
− exp

(
− c2

2σ 2

))]1

0

− F τ

√
2π

2σ


 c · gerf

(√
2 (c − 1)

2σ

)]1

0

+
∫ 1

0

c
√

2
σ
√

π
exp

(
− c2

2σ 2 + c
σ 2 − 1

2σ 2

)
dc

)

− F τ

√
2π

2σ


 c · gerf

(
c
√

2
2σ

)]1

0

−
∫ 1

0

c
√

2
σ
√

π
exp

(
− c2

2σ 2

)
dc




= −F τ

(
exp

(
− 1

2σ 2

)
exp

(
− c2

2σ 2 + c
σ 2

)
− exp

(
− c2

2σ 2

))]1

0

− F τ

√
2π

2σ


 c · gerf

(√
2 (c − 1)

2σ

)]1

0

+
(

erf

(√
2 (c − 1)

2σ

)

−σ
√

2√
π

exp
(

− c2

2σ 2 + c
σ 2 − 1

2σ 2

)]1

0







− F τ

√
2π

2σ


 c · gerf

(
c
√

2
2σ

)]1

0

+ σ
√

2√
π

exp
(

− c2

2σ 2

)]1

0




= F τ

(√
2π

σ
erf

(√
2

2σ

)
+ 4 exp

(
− 1

2σ 2

)
− 4

)
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